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INTRODUCTION 

THE USE ofcondenstng fins is very extensive in the application 
of heat exchange. In investigating heat-transfer chardc- 
teristics of a condensing fin, the conjugate problem with the 
condensate boundary layer and heat conduction in the fin 
must be considered. Conjugate heat transfer from fins has 
received considerable attention in recent years [l-5]. 
However, a few investigators studied the laminar boundary 
layer analysis of film condensation on a vertical plate fin in 
the presence of the interfacial shear at the condensateevapor 
interface. 

Due to the work of Nusselt. considerable work has been 
done on laminar film condensation from isothermal surfaces. 
However, only a few investigators [h-12] studied laminar 
film condensation on a vertical fin. Patankar and Sparrow [6] 
solved the coupled problem of condensation on an extended 
surface. Lienhard and Dhir [7] investigated the case of lami- 
nar film condensation without the interfacial resistance on 
various geometries for which similar solutions can be 
obtained. However, they did not simultaneously solve 
boundary layer equations in two phases and heat conduction 
tn the fin. Acharya ef al. [8] proposed two simpler methods 
to calculate the fin efficiency of laminar film condensation 
on various fin shapes. Sarma et al. [9] studied laminar film 
condensation on a vertical plate fin of variable thickness. In 
these previous works [6612] not only the shear at the liquid- 
vapor interface was assumed to be negligible but also the 
Nusselt model was used. 

Yang [I 31 considered lammar film condensation on non- 
Isothermal plates in a brief note. He developed a complex 
scheme for solving boundary layer equations and found some 
deviations from the Nusselt-Rohsenow results. The present 
study is concerned with laminar film condensation on a ver- 
tical plate fin in the presence of the shear force at the liquid- 
vapor interface. In addition, effects of various parameters, 
such as Pr, Ja and Nc, on the heat transfer rate are also taken 
tnto account. Due to the non-linearity and close coupling. 
all the equations must simultaneously be solved. The I-D 
heat conduction equation in the fin and boundary layer equa- 
tions in two phases are respectively solved by using the cen- 
tral finite-difference approximation and the local non-simt- 
larity method [14]. The main purpose of the present study is 
to investigate the difference between the present results and 
those obtained from the Nusselt model [l&12]. 

ANALYSIS 

A schematic diagram of the physical model with the coor- 
dinate system is shown in Fig. I. A vertical plate fin of 
thickness 21 and length L (L >> 2f) is attached to a wall at its 
temperature To and is placed in the pure vapor at its satu- 
ratton temperature T,. r, is assumed to exceed the tem- 

perature at the fin base K,. Thus condensation occurs on 
the fin and, in steady state, a continuous laminar film of 
condensate flows downward along it due to the action of 
gravity 9. Along the liquid-vapor interface, the vapor vel- 
ocity tangent to the interface is the same as that of the liquid 
if there is no slip. The vapor velocity approaches zero at 
some distance away from the interface. Consequently, there 
simultaneously exist both liquid and vapor boundary layers. 
Assume that the condensate on the fin forms a laminar, 
non-rippling film. In addition, the assumptions made in the 
analysis for the isothermal case [15] are also applied in the 
present study. 
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FIG. I. Physical configuration of the present study 
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NOMENCLATURE 

hn efficiency t half thickness of the tin 
reduced stream function for condensate and U, r velocity components 
vapor Y. )‘ coordinates. 

.Y c’f;/a<. or acceleration of gravity 
G c:F/dC 
1; 

Greek symbols 
dimensionless local heat transfer coefficient thermal diffusivity of the condensate 

II 1% latent heat of condensate ; volumetric coefficient of thermal expansion 
Jo Jakob number. c,(T,- T,)//I,, 6 film thickness 
Ii,, k, thermal conductivity of the condensate and pseudo-similarity variable 

fin ;.sr dimensionless temperature of the 
L fin length condensate and fin 
;vc conduction-film condensation parameter. \ kinematic viscosity 

Lk, c,_/k,r dimensionless vanable 
Pr Prandtl number (‘e/i< 

Q overall fin heat transfer rate :: stream function. 
4 local natural-convection heat flux 
R [(P&.l(PAl’ z Subscripts 
T. T, temperature of the condensate and fin L condensation film 
G temperature at the fin base F v vapor phase. 

I 

(8) 

where k, is the thermal conductivity of the fin. The equation 
(3) is subjected to the following boundary conditions as : 

r, = T” at x = 0, (94 
The variation of fluid properties is neglected, and the viscous 
dissipation term is omitted from the energy equation since it 
is negligibly small. All the fluid properties are those of the 
condensate except p,. which is the density of the vapor. 

Vupor 
Next, turning to the vapor, due to the assumption of 

the satuation condition, the vapor temperature is essentially 
constant. Thus the energy equation need not be considered, 
and only the continuity and momentum equations remain. 

The boundary conditions for this problem are : 

u=r=O T=T,(.u) at y=O, (oa) 

U,-+O at j‘-+X, (6b) 

u = 0 at .Y = 0 1’ 2 0. (6~) 

Interface matching. It is clear that the veloctty. mass trans- 
fer. shear force and temperature along the interface must be 
matched in both the liquid and vapor phases 1151. These 
compatibility requirements are given as : 

and 

T= 7-, at ?‘ = 6. (7) 

The I-D heat conduction equation for a thin fin with its 
negligible tip leakage of heat is given as 

F=O at s=L 
Y (9b) 

Local non-similarity transfonlzalion 
The continuity equation (I) can be satisfied by introducing 

a stream function tiL such that u = 8$,/r)yand t’ = - a$L/dX. 
The remaining partial differential equations can be trans- 
formed into the corresponding ordinary differential equa- 
tions by the following dimensionless parameters. To do this, 
a dimensionless coordinate 5 is introduced as : 

( = u/L. (10) 
The dimensionless constants C~ and c,, pseudo-similarity 
variables qL and q,, reduced stream functions f and F and 
dimensionless temperature 0 are defined, respectively, as : 
Liquid layer : 

Vapor layer: 

Velocity components in the condensate film can be expressed 
in terms of the new variables as : 

With these dimensronlcss variables in equations (lO))( l2), 
the momentum and energy equations for the liquid and vapor 
layers are then transformed into a set of the dimensionless 
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forms : given as : 

The boundary condttions (6) and (7) can be written as : 

f= i’= 0 B = O,(C) at q = 0. ( 18a) 

where (I,$ = (r,- r,)!(T,,- T,), R = [GwC),I(PP),I’ ’ and 
Pr = $1, q. The primes denote differentiation with respect to 
qL for the liquid layer and to ye, for the vapor layer. It is 
evident that the momentum equation is independent of the 
energy equation. Thus momentum equations are solved sep- 
arately provided certain compatibility conditions at the inter- 
face can be satisfied. Moreover, the solution of the momen- 
tum equation depends on R and the dimensionless thickness 
of the condensate film nLd. The effect of R on the heat transfer 
rate was always neglected for condensing fins in previous 
works [6612]. However, its effect will be considered in the 
present study. 

It is evident that the system of equations (15)-(18) con- 
stitutes a mathematical form for laminar film condensation 
of a saturated vapor on the vertical plate fin under the gravi- 
tational action. Once O,(c) is specified, the system of equa- 
tions can be solved. 

The thermal coupling between the conduction equation 
and the energy equation in the liquid layer is expressed by 
the requirement that the temperature and heat flux must be 
continuous at the fin-liquid interface. These conditions are 
given as : 

Using the dimensionless variable 0, = (T,- T,)i(T”, T,) can 
yield the dimensionless forms of equations (8) and (9) as : 

and 

(21) 

(22a) 

0, = I at i: = I. (22b) 

where Nc~ 1s denoted as the conjugate conducttonfilm con- 
densatton parameter and is given as: 

M+k,r, 
I 

G-9) 

The dtmenstonless heat transfer coethcient I; is defined as : 

The liquid film thickness 6 (and hence qLd) is not known N 
priori and is one of the results of the present study. As stated 
by Koh CI al. [ 151. v,.~ can be obtained from an energy balance 
at the liquid- vapor interface. The relation at this Interface is 

Substituting the dtmensionless parameters shown in equa- 
tion (11) into equation (7) in conjunction with the definition 
of the stream function G/L yields : 

Thus the dimenstonless form of equation (25) can be written 
as : 

./a= -p,-li3/+4i~)18.],~=,,,. (27) 

where Ju is the Jakob number and is defined as Ju = 
cp( T,- T,,)lh,,. As stated by Koh et al. [15], there exists a 
unique relation between qr,, and Ja for a given value of Pr. 
.\‘c~ and R. Thus qLa should carefully be chosen to yield a 
physical significant variation in (Ja, R, NC, Pr). 

NUMERICAL METHOD 

Equations (15)-(IS) are solved approximately by the two 
equation model of the local non-similarity method [14]. To 
this end, the following three functions for generating the 
two-equation model are introduced as : 

d5, d = am ~(5, ‘1) = awx (~(5, d = aem (28) 
Owing to these definitions in equation (28). equations 

(I 5)-( 17) can be transformed into six ordinary differential 
equations. Three additional differential equations are 
obtained by differentiating equations (15)-( 17) with respect 
to 5. To close the system of equations at the second-order 
level, terms involving agjat. aG/a< and acp/Zl, etc., are 
ignored. Under this simplifying assumption, the whole set 
can be treated as a coupled system of ordinary differential 
equations, parameterized in 5 : 

,/“‘+3,fr’‘-2(f)‘+ 1 = 4<(,f’g’-,f”g), (29) 

Prm’H”+3f’H’ = 45(,f’q-fYg), (30) 

F”‘+3FF’-2(F’)L = 4c(F’G’-F”G), (31) 

4”’ + -ifs” + 7,g/ ” - Sf ‘g’ = 45(g’g’ ~ ,g’,g). (32) 

Pr -‘q”+~fip’+7gtl’-_4f’cp = 4S(g’q-q’g), (33) 
G”‘+31;ti”+7GF’-8F’G’ = 4<(G’G’-G”G). (34) 

The approximate boundary conditions are required for 
solving the three additional equations (32))(34). Under the 
circumstances. the whole set of boundary conditions is given 
by 

/=,f’=g=y’=O at ,TL=O, (35a) 

0 = N, = 0, (<) cp = cV,fc’i; at rlr = 0. (35b) 

f ’ = F’ Rf” = F”3F+4<G = R(3Jf4;g) g’ = G 

Rg” z G”’ G = Rg Ju = - Pr[(3,f+4&)‘0’] 

at qr=r~,&. (35c) 

F’=G’=O at q,+x_. (35d) 

It IS evtdent that equations (29), (31), (32) and (34) can be 
solved independently, and then equations (30) and (33) are 
solved by using results of “f” and “g” through equattons 
(29) and (32). One hundred fin grid points are used in the 
present study. The grid point deployment is uniform. It can 
be found from equations (21) and (24) that the location at 
the fin tip (< = 0) is a singular point. To overcome this 
difficulty in the numerical treatment for this singular point. 
approximate values of ?H,!?[ and 0, at < = Ai; are given. 
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respectively, as : 

and 

4 (At)’ 4 +H, (37) 
. = I$; ,, = !I .=o 

The discretized form of equation (21) in the interval. 
AC < < < I. using the central finite-dtflerence algorithm. is 

(I,,. I -2n,,+o,, / 
= N&H,, i= 1.2 . .._. 99. (38) 

AC: 

where OiO = U,-(O) is an initially guessed value. 0, ,,,,) = 
O,(I) = I. 

Distributions off, F and fl at a specific position [, depend 
only on qLO for the given value of Pr, NC, Ju and R. The 
iterative procedures of the present method are followed for 
the 

(1) 

(2) 

(3) 

solution of equations (21). (22). (27) and (29) -(35). 

We give a predictive value of H,(O). Then, for the &en 
value of Pr, Ju, R and qro, the boundary layer equations 
(29)-(35) can be solved by using the fourth-order 
Runge-Kutta method in conjunction with the Nacht- 
sheim--Swigert iteration scheme [IS] to fulfil boundary 
conditions at the edge of the vapor layer. If the energy 
balance equation at the liquid-vapor interface (27) is not 
satisfied, a new guess for q,, will again be made. The 
entire calculation is repeated until equation (27) is satis- 
fied. Values of h,(At) and q&At) can be obtained from 
these computational procedures. 
Values of h(A<) and .$(A() obtained from step (1) are 
used as input data for determining results at the next 
location. The results of d&/d5 and orat 5 T 2At can be 
obtained from equation (38). However, h at 5 = 265 
must be determined from boundary layer equations. 
These computational processes are continued until 
t= I. 
Steps (I) and (2) are repeated until / S,,,,(~ = I) - 1 / < 
10-j. 

The local heat flux ~7 along the condensing fin can be 
expressed as : 

@) = -k ‘?T 
I - = h(.r)[T,(.+ 7’,]. (39) 

(‘4‘ , = 0 

Substitutingequations (I I) and (24) intoequation (39) yields 
the dimensionless form of y(.u) as : 

^ r YL I I4 dU 

y(i) = k, (‘, (T” - r,) = F-1 L-1 5 aa ,,=o’ 
(40) 

The numerical values of the overall fin heat transfer rate 
Q(.Y) can be obtained by integrating the local heat flux q(x) 
over the condensing tin. However, all of the heat lost by the 
fin must be conducted into the fin base at Y = 2,. Thus Q(Y) 
can be written as : 

The dimensionless form of equation (41) is : 

Q 2 df), 
’ = kL(T,--,,)cL Nc df - Cl ;_; 

(42) 

Assume that the tin efficiency is defined as the ratio of the 
actual condensation taking place on the fin to the heat trans- 
fer rate estimated from the classical Nusselt analysis for 
isothermal conditions of the surface maintained at its base 
temperature [9]. This implies that the fin efficiency E can be 
expressed as : 

The classical Nusselt analysis for a vertical isothermal 
surface gives the relation of the heat transfer coefficient at 
the isothermal condition h,,,, as : 

/I,,, = (4k, c, ,‘3L),‘(Pp,‘J0)’ ‘. (44) 

The substitution of equations (42) and (44) mto equation 
(43) gtves : 

E = 0.375Q:(PrrJu)’ I. (45) 

RESULTS AND DISCUSSION 

Figure 2 shows that the effect of NC on the dimensionless 
temperature distribution of the fin for Pr = 2. R = 100 and 
Ju = 0.1, 0.008. It is evident that the present results have 
some deviations from those obtained by using the Nusselt 
model [I I, 121. The difference of the temperature distribution 
between them increases with increasing NC,. It can be seen 
that the dimensionless temperature at the fin tip tends to the 
saturation temperature 7’, with increasing NC or decreasing 
Ja. At the same time, the larger the value of NC, the steeper 
the dimensionless temperature gradient at the fin base. How- 
ever, the fin efficiency E increases with decreasing NC or 
increasing Ju, as shown in Fig. 3. Examining Fig. 3 and 
equation (45) indicates that the overall heat transfer rate Q 
also decreases with increasing NC because the fin becomes 
more non-isothermal. It may be noted that NC = 0 implies 
an infinite thermal conductivity of the fin. An increase in NC 
indicates an increase in k,/k, or L/f. The Jakob number Ju is 
a relative measure of the degree of subcooling experienced 
by the liquid film. Thus it can be concluded from the defi- 
nition of NC and Ja that the present numerical results are 
correct. Figure 3 also shows that the Nusselt model over- 
predicts the fin efficiency, and the difference of E between 
the present results and those obtained by the Nusselt model 
increases with decreasing Ja or increasing NC. The maximum 
difference of E is about 14.8%. 

The effect of the interfacial shear on velocity profiles at 
the fin base and the difference of /’ between the present 
results and those obtained by the Nusselt model [I I, 121 are 
shown in Fig. 4. It is found that the velocity profile of the 
vapor layer shows a rapid decrease in magnitude for large 
values of R and is almost a vertical jump for values of R 
greater than 500. However, the effect of R on the velocity 
profile in the condensate can be neglected for the present 
study. It can also be observed that the maximum difference 
of,f” at the liquid-vapor interface between the two models is 
about 27% and the simple theory using the Nusselt model 
underpredicts the dimensionless condensate film thickness 
and the condensate velocity. It can be concluded from Figs. 
224 that the application of the Nusselt model ,to the con- 
densing fin has some deficiencies for larger NC values. 

The effects of Pr_and Ju on the dimensionless bcal heat 
transfer coefficient h are respectively shown in Figs. 5 and_,h. 
Figure 5 shows that decreasing the value of Pr tends to 
decrease /; for a fixed value of R, Ju and NC. This indicates 
that the inertia force tends to lower the heat transfer rate for 
a small Pr value. It can be seen from ref. [IS] that an increase 
in Ju will thicken the condensate film thickness. Based on 
the assumption of the local heat transfer coefficient in the 
problem of laminar film condensation, increasing Ju can 
cause a substantial reductton of the heat transfer coefficient, 
as shown in Fig. 6. 

CONCLUSIONS 

The problem of conjugate conduction-laminar film con- 
densatton of the pure saturated vapor on a vertical plate fin 
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FIG. 2.(a) Effect of NC on the temperature distribution of the fin for Ja = 0.1, Pr = 2 and R = 100. 
(b) Effect of Nc on the temperature distribution of the fin for Ju = 0.008, Pr = 2 and R = 100. 
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has successfully been studied. A simple and efficient numeri- 
cal method is proposed for its solution. The present results 
show that R ranging from 100 to 500 has a negligible effect on 
the velocity profile of the condensate. However, the obvious 
deviation of the velocity profile between the present results 
and those obtained from the Nusselt model can be observed. 
In addition, the simple theory using the Nusselt model over- 
predicts the fin efficiency, and underpredicts the dimen- 
sionless film thickness and the dimensionless temperature 
distribution of the fin. The difference of the fin efficiency 
between the two models is increased with increasing NC or 
decreasing Ju. Thus it can be concluded that the application 
of the Nusselt model to the condensing fin may have some 
deficiencies for determining some physical results. A further 
extension of the present numerical scheme to other physical 
problems. such as the problem of the conjugate film con- 
densation on one side of a vertical wall and natural con- 
vection on the other side, will be investigated in the future. 
The effect of the wavy action on such problems will be 
considered during subsequent development of the present 
analysis. 

I 
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